The San Francisco VA Medical Center

and KB_SQL
February 1999

Kevin Magee

Programmer/Analyst

San Francisco VA Medical Center

kevin.magee@med.va.gov
Overview

This white paper describes the San Francisco VA Medical Center's (SFVAMC) experience using KB_SQL to access VISTA data from the SFVAMC Intranet. I will discuss the development of 3 web applications, created with Visual InterDev 1.0, interfaced through KB_SQL'S ODBC driver, to KB_SQL running within our VISTA environment. The 3 applications are:

Staff Directory Inquiry

CT Critical Pathway

Employee Training - Class Registration

Microsoft's Visual InterDev is a web development tool that creates Active Server Pages (.asp). Active Server Pages are a combination of html and a scripting language (VBScript or Jscript). The active server pages created for these applications contain VBScript. I will be displaying parts of active server pages throughout this paper. If you want to look at the complete active server page code for these applications you can retrieve the following zipped file:

http://152.132.3.27/kbsummit.zip - (Inside VA's firewall)

http://www.snowcrest.net/magee/kbsummit.zip - (Outside VA's firewall)

The zipped file also contains this word document and a global.asa file for each application. The global.asa file is were Visual InterDev stores the information needed to access your ODBC Data Sources. The global.asa is also were the KB_SQL UserName and KB_SQL Password are stored. I made a note in each file where you would need to type in the user name and password.

Another note worth mentioning is that Microsoft has now released Version 6.0 of Visual InterDev. Version 6.0 is actually the next version from version 1.0 but since it is now packaged with Visual Studio 6.0 they assigned the same version number. There have been some major changes in the 2 versions. The major one to note is that version 1.0 made use of objects called Data Range Headers, Data Range Footers, and Data Commands while version 6.0 now only has Data Commands. The active server pages discussed here make use of all 3 objects.

In version 1.0 of Visual InterDev the Data Range Headers and Data Range Footers were used to control looping through result sets that contained multiple records, while a Data Command is used to retrieve a single record. The Data Range Header, where the SQL Statement is located, begins the loop, and the Data Range Footer is inserted to complete the loop. In between the Data Range Header and Footer you put your html code (a table) and code to write from the results set returned.

In version 6.0 of Visual InterDev the Data Command now pulls back the entire results set and you control your looping in your script code.

I will be speaking more about active server pages, SQL Statements, KB_SQL SQL stored procedures, KB_SQL Functions, parameter passing, and ODBC throughout this paper.

In the Beginning…

The first application we wanted to create was to have our VISTA Class III Online Telephone Directory Application data available for query from the SFVAMC Intranet.

We decided to give the user a choice of three ways to query the telephone data, by the staff person’s last name, by medical center service, or query by the first letter of the staff person’s last name.

[image: image1.png]Index.htm

The index.htm illustrates two ways to handle user requests. The query by last name and the query by service use html forms. Html forms have a FORM ACTION tag where we tell the web server what to do with the form content. In our case, we call active server pages (.asp). The query by letter calls phone2.asp (<form action="phone2.asp" method="POST">, while the query by service calls phone3.asp (<form action="phone3.asp" method="POST">). The active server page is invoked when the user selects the submit button for the form.

The query by letter illustrates how to invoke an active server page from straight html. The

A "hyperlink" passes the letter "A" to phone.asp when the user selects the letter "A".

Now let's look at what happens when an active server page is invoked.
The first thing the active server page must do when it is invoked is to receive the parameter passed to it. In the query by last name the active server page (phone2.asp) has a line of code:

<% name = UCase(Request("name")) %>

The variable name is set equal to the uppercase value of the name variable passed in. This variable will then be used when calling the KB_SQL Stored Procedure ST_PHONE_NAME. Here's a look at the Data Range Header code from phone2.asp that calls the stored procedure.

Set DataConn = Server.CreateObject("ADODB.Connection")

DataConn.ConnectionTimeout = Session("DataConn_ConnectionTimeout")

DataConn.CommandTimeout = Session("DataConn_CommandTimeout")

DataConn.Open Session("DataConn_ConnectionString"), Session("DataConn_RuntimeUserName"), Session("DataConn_RuntimePassword")

Set cmdTemp = Server.CreateObject("ADODB.Command")

Set DataRangeHdr1 = Server.CreateObject("ADODB.Recordset")

cmdTemp.CommandText = "ST_PHONE_NAME('" & name & "')"
cmdTemp.CommandType = 4

Set cmdTemp.ActiveConnection = DataConn

DataRangeHdr1.Open cmdTemp, , 0, 1

Note the syntax within the parenthesis to pass the parameter, single quote, double quote, space, ampersand, space, variable, space, ampersand, space, double quote, single quote.

Here's a look at the KB_SQL Stored Procedure ST_PHONE_NAME:

SET STORED_PROCEDURE ON

SET PARAMETERS = 'name'

SELECT TELEPHONE_DIRECTORY_RECORD_ID, REAL_NAME, REAL_SECTION,

SERVICE_FK@NAME AS SERV

 FROM TELEPHONE_DIRECTORY_RECORD

 WHERE REAL_NAME [? AND RECORD_TYPE <> 'O’

 ORDER BY REAL_NAME
Note the question mark in the where clause. The question mark refers to the parameter 'name'. If you have multiple parameters and need to use multiple question marks, the parameters need to be passed in in the order the variables are used in the where clause. You'll see an example of this later.

Now that the Data Range Header is accessing data, we need to insert an html table to display the query results:

<tr bgcolor="#FFFFFF">

<td><fontsize="2"><ahref="staff.asp?ien=<%=DataRangeHdr1("TELEPHONE_DIRECTORY_RECORD_ID")%>"><%= DataRangeHdr1("REAL_NAME") %> </td>

<td><%= DataRangeHdr1("REAL_SECTION") %> </td>

<td><%= DataRangeHdr1("SERV") %> </td>

</tr>

The beginning of the table is set up before the Data Range Header is invoked. The Data Range Footer is inserted after the display data is written to close the loop.

The resulting display to the user is a table of choices that meet the criteria entered.

[image: image2.png]Phone2.asp Result

The query by service and the query by letter return the same choice table based on the criteria of the selection. The query by service invokes phone3.asp. Phone3.asp calls the KB_SQL Stored Procedure ST_PHONE_SERVICE:

SET STORED_PROCEDURE ON

SET PARAMETERS = 'service'

SELECT TELEPHONE_DIRECTORY_RECORD_ID, REAL_NAME, DISPLAY_EXTENSION,TITLE,

SERVICE_FK@NAME AS SERV, ROOM_BLDG_FK@ROOM_NUMBER AS RM

 FROM TELEPHONE_DIRECTORY_RECORD

 WHERE SERVICE_FK@NAME [? AND RECORD_TYPE <> 'O'

 ORDER BY REAL_NAME
The query by letter invokes phone.asp. Phone.asp calls the KB_SQL Procedure ST_PHONE_LETTER:

SET STORED_PROCEDURE ON

SET PARAMETERS = 'letter’

SELECT TELEPHONE_DIRECTORY_RECORD_ID, REAL_NAME, REAL_SECTION,

SERVICE_FK@NAME AS SERV

 FROM TELEPHONE_DIRECTORY_RECORD

 WHERE EXTRACT(REAL_NAME,1,1) = ? AND RECORD_TYPE <> 'O'

 ORDER BY REAL_NAME
Once the user is presented with their choice list they can select the individual for who they are seeking staff directory information. When the user makes their selection, either from the query by name, query by service, or query by letter, the staff.asp active server page is invoked. Unlike phone.asp, phone2.asp, and phone3.asp, staff.asp uses a Data Command instead of the Data Range Header/Data Range Footer combination. The reason is that we know the internal entry number of the record because it is imbedded in the hyperlink in the choice table and is passed to staff.asp (from the table script code above):

<ahref="staff.asp?ien=<%=DataRangeHdr1("TELEPHONE_DIRECTORY_RECORD_ID")%>"><%= DataRangeHdr1("REAL_NAME") %>

The staff.asp invokes the KB_SQL Stored Procedure ST_PHONE_IEN:

SET STORED_PROCEDURE ON

SET PARAMETERS = 'ien'

SELECT REAL_NAME, REAL_SECTION, SERVICE_FK@NAME AS SERV, DIGITAL_PAGER,

DISPLAY_EXTENSION, ROUTING_SYMBOL, TITLE, VOICE_PAGER, DEGREE_FK@NAME AS DEG, ROOM_BLDG_FK@ROOM_NUMBER AS RM

FROM TELEPHONE_DIRECTORY_RECORD

WHERE TELEPHONE_DIRECTORY_RECORD_ID = ?
The user is then displayed the query results.

Staff.asp Result

[image: image3.png]
That's how the Staff Directory Inquiry web application works.

VISTA Access/Verify Code

Before we could start developing interactive web applications to VISTA we needed a way to verify who a user was before they could interact with, including writing data to, VISTA. The solution was to create a KB_SQL Function that receives a users VISTA Access/Verify Code pair in a parameter, invoke a Kernel routine to validate the access/verify code pair, and based on a successful validation, allow the user to continue with the application.

Here's how the KB_SQL Function is set up:

[image: image4.png]
Note the Parse check routine A1^SQL0FC. This tells KB_SQL that 1 parameter needs to be received and also sets up the VALUE variable. The Runtime routine - VALIDAV^XUSRA(.VALUE,VALUE(1)) invokes the Kernel routine XUSRA. VALUE is the return variable, the user’s DUZ if a valid code pair is entered. VALUE(1) is the code pair variable received and passed by KB_SQL.

The way it works is a user is displayed an html form to enter their VISTA Access and Verify Codes. An active server page is then invoked and puts the Access/Verify code pair into one, semi-colon delimited variable:

<% codes = Request("access") + ";" + Request("verify") %>

The active server page then invokes a Data Command object with the following SQL command:

SELECT NEW_PERSON_ID, NAME, NICK_NAME FROM NEW_PERSON WHERE NEW_PERSON_ID = PIECE(AVCODE('" & codes & "'),'^',1)

The WHERE clause is where the AVCODE KB_SQL Function is invoked. The first piece of the returned variable VALUE is the user’s DUZ. In VA, the DUZ is equivalent to the user’s internal entry number in the New Person File. In KB_SQL, the internal entry number of a table is the TABLE-NAME_ID, so by coding NEW_PERSON_ID=PIECE(AVCODE('" & codes & "'),'^',1), we can validate a user.

An AVCODE KB_SQL Function returns a value of "0" if an invalid access/verify code pair is entered or if the user’s verify code has expired. I do not deal with expired verify codes from the web. The user will have to log into VISTA to enter a new verify code.

What if a user enters an invalid access/verify code pair? We need to deal with that within our active server page script:

<% On Error Resume Next %>

<% If 0 = DataCommand1("NEW_PERSON_ID") then %>

 <h4>Sorry. Not a valid Access or Verify code, or your Verify Code has expired</h4>

 <p>

 Return

<% Else %>

 <% duz = DataCommand1("NEW_PERSON_ID") %>

 <h1>Hello <%= DataCommand1("NICK_NAME") %></h1>

The "On Error Resume Next" VBScript code allows the active server page to continue running when an SQL command returns an empty result set which is the case when a user enters an invalid access/verify code pair.

The VISTA Access/Verify Code function is used in both the CT Critical Pathway and Employee Training - Class Registration applications which I will discuss later.

We also use the VISTA Access/Verify Code function as part of the "One-User Sign-On" solution developed for our Marquette ICU Monitoring/Charting System. The Marquette Medical Systems changed their login procedure to invoke the VISTA Access/Verify Code function, and based on the clinician’s title in VISTA, the user is given specific privileges to the Marquette ICU Monitoring/Charting System.

Cardiothoracic (CT) Critical Pathway

The second application we developed using KB_SQL is the CT Critical Pathway. The CT Critical Pathway allows a user to select descriptive check boxes on a web form and create a new Progress Note in the VISTA Text Integrated Utility (TIU) package.

The evolution of the CT Critical Pathway application is quite interesting. Mark Ratcliffe, M.D., Chief, Cardiothoracic Surgery, developed the CT Critical Pathway application using Symantec’s Visual Café (Java). He created a working application that actually opened up a telnet session to VISTA and followed a menu path into the Progress Notes Package and filed the progress note. With the implementation of VISTA's TIU package, the Progress note package no longer existed. We decided to re-work the CT Pathway for TIU using KB_SQL as the interface.

I did the original development of the TIU interface using Visual InterDev and the active server pages are included in the zip file. The screen captures used to help visualize the CT Pathway application are from the Java version of the application. The KB_SQL Functions and SQL commands are the same for both.

Like all applications that are developed for the web, the user is first prompted for the VISTA Access/Verify codes:

[image: image5.png]CT Critical Pathway

When the user's access/verify code pair has been authenticated, they are prompted to enter the patient's social security number. Since the Patient File is large, lookup by name would not work. I have not experimented with creating a View of the Patient File with inpatients only.

[image: image6.png]Patient Lookup

The patient.asp active server page calls the ST_PTLOOK('" & ptssn & "') KB_SQL Stored Procedure:

SET STORED_PROCEDURE ON

SET PARAMETERS = 'ptssn'

 SELECT PATIENT_ID, NAME, SOCIAL_SECURITY_NUMBER, DATE_OF_BIRTH

 FROM PATIENT

 WHERE SOCIAL_SECURITY_NUMBER = ?
The lookup also populates a list box with all the patient's surgical procedure's with a call to the KB_SQL Stored Procedure ST_OPERAT('" & dfn & "'). The Java Application does this in one step while I used two steps. The note.asp active server page makes this call.

 SET STORED_PROCEDURE ON

 SET PARAMETERS 'dfn'

 SELECT PATIENT, DATE_OF_OPERATION, PRINCIPAL_PROCEDURE

 FROM SURGERY

 WHERE PATIENT = ?
The user is then presented the screen to select the surgical procedure for which this note applies and also a list box to select the Progress Note Title of the note. The note title is needed to create the TIU note and must be a valid TIU note title:

[image: image7.png]Procedure and Note Title Selection

In the active server page application I just present the user with a text box to enter in the text of the note. The Java application presents the user with a form with check box's to select certain characteristics appropriate with the patient in question.

[image: image8.png]Patient Characteristics

When the user is finished checking the appropriate boxes, the application converts the check boxes into a text note that the user can edit prior to sending the note to TIU in VISTA. It also populates an Access database that is used for statistical purposes.

[image: image9.png]Text Note

When the user hits the OK button, the note is sent to TIU in VISTA. This is where KB_SQL gets back to work.

The current version of KB_SQL's ODBC driver (v3.6) and the KB_SQL M Based server do not support the memo field so the note text has to be transmitted one line at a time through the ODBC driver. What I do is transmit the text and store it in an M temporary global and when the note is completely transmitted I create an unsigned TIU Progress Note.

The next.asp active server page loops through the note and sends one line at a time with the following SQL command:

SELECT TIU_DOCUMENT_ID FROM TIU_DOCUMENT WHERE TIU_DOCUMENT_ID = KMM_TEXT_TIU('" & duz & "','" & n & "','" & line & "')

Here we utilize another locally created KB_SQL Function called KMM_TEXT_TIU. I have found that KB_SQL functions are a useful tool when I need to process data at the M level. In this case, I set the temporary global with the note text. Below is the KMM_TEXT_TIU function:

[image: image10.png]KMM_TEXT_TIU Function

Note that we are passing in three parameters to the parse check routine A3^SQL0FC. Here is a look at the M routine ARHATTIU, which receives the three parameters and sets the temp global:

ARHATTIU ;SFVAMC/KMM 10/21/97 - ADD TEXT LINES TO TIU NOTE

 ;;1.0

EN(VALUE) ;

 S U="^"

 S ^UTILITY("KMM-TIU-NOTE",VALUE(1),VALUE(2),0)=VALUE(3)

 S VALUE=1

 Q

I set the VALUE (return) variable equal to one. If the call succeeds (global is set), 1 equals true, so I check for 1 in active server script.

Once the complete note has been sent to VISTA, I then call the following SQL Command to create the TIU Text Note:

SELECT TIU_DOCUMENT_ID FROM TIU_DOCUMENT WHERE TIU_DOCUMENT_ID = KMM_MAKE_TIU('" & dfn & "','" & duz & "','" & pntitle & "')

In this case, we call the KB_SQL locally created function called KMM_MAKE_TIU. This function has the same structure as KMM_TEXT_TIU except that it calls the M routine ARHAMTIU:

ARHAMTIU ;SFVAMC/KMM 10/8/97 - MAKE A TIU NOTE

 ;;1.0

EN(VALUE) ;

 S U="^",ARHT=0,IO="",IO(0)="",I=0

 S ARHDFN=VALUE(1)

 S DUZ=VALUE(2)

 S ARHA(1302)=DUZ

 S ARHT=$O(^TIU(8925.1,"B",$E(VALUE(3),1,30),ARHT))

 F S I=$O(^UTILITY("KMM-TIU-NOTE",DUZ,I)) Q:I'>0 S ARHA("TEXT",I,0)=$G(

^UTILITY("KMM-TIU-NOTE",DUZ,I,0)),N=I

 D MAKE^TIUSRVP(.VALUE,ARHDFN,ARHT,,,,.ARHA)

 S $P(^TIU(8925,+VALUE,"TEXT",0),U,5)=$E($P(^TIU(8925,+VALUE,12),U,1),1,7)

 S $P(^TIU(8925,+VALUE,"TEXT",0),U,3)=N

 S $P(^TIU(8925,+VALUE,"TEXT",0),U,4)=N

 K ARHT,ARHDFN,ARHA,ARHDFN,IO,I,N,^UTILITY("KMM-TIU-NOTE",DUZ)

 K ^UTILITY("KMM-TIU-NOTE",DUZ)

 Q

The VISTA TIU package contains existing programmer API's which are used to actually write data to the M database. You can write data to the M database using SQL commands. I will explain how to do that in the Employee Training - Class Registration application.

If the TIU API call successfully creates the TIU note, the internal entry number for the note is returned in the VALUE variable.

In my active server page application, I display to the user the unsigned TIU note and then prompt the user for the electronic signature code to sign the note. The Java application checks that a note was created and prompts the user for their electronic signature code.

The TIU Application also has an API to apply an electronic signature code and also an API to print the Note to a VISTA printer device.

The finsih.asp active server page calls the following SQL command to apply the electronic signature code to the TIU Note:

SELECT TIU_DOCUMENT_ID, SIGNED_BY_FK@NAME AS EMPNAME FROM TIU_DOCUMENT WHERE TIU_DOCUMENT_ID = KMM_SIGN_TIU('" & ien & "','" & sig & "','" & duz & "')

The locally created KB_SQL Function KMM_SIGN_TIU is invoked. It has the same structure (3 parameters) as the KMM_TEXT_TIU and KMM_NOTE_TIU functions but calls the M routine ARHASTIU below:

ARHASTIU ;SFVAMC/KMM 10/9/97 - SIGN A TIU DOCUMENT FROM INTERNET

 ;;1.0

 ;

EN(VALUE) ;

 S U="^",IO="",IO(0)="",DUZ(0)="",ARHRT=0

 S ARHIEN=VALUE(1),ARHSIG=VALUE(2),DUZ=VALUE(3)

 D NOW^%DTC S DT=X

 S XWBOS=1

 D SIGN^TIUSRVP(.ARHRT,ARHIEN,$$ENCRYP^XUSRB1(ARHSIG))

 S VALUE=$S(+ARHRT=0:ARHIEN,1:0)

 K ARHIEN,ARHSIG,ARHRT,XWBOS

 Q
The return variable from the TIU API is zero if the electronic signature was successfully applied (I don't know why) so I set the return variable to the internal entry number of the TIU note if the API was successful and to zero if not.

The print.asp active server page contains the following SQL command to print the TIU note to a VISTA device:

SELECT TIU_DOCUMENT_ID FROM TIU_DOCUMENT WHERE TIU_DOCUMENT_ID = KMM_PRINT_TIU('" & ien & "','" & dev & "','" & flag & "')

Again, the KMM_PRINT_TIU KB_SQL Function has the same structure as the others but calls the M routine ARHAPTIU:

EN(VALUE) ;

 S U="^"

 S ARHDA=VALUE(1),ARHDEV=VALUE(2),ARHFLG=VALUE(3)

 D RPC^TIUPD(.VALUE,ARHDA,ARHDEV,ARHFLG)

 K ARHDA,ARHDEV,ARHFLG

 Q
That is basically how the CT Critical Pathway works.

The Java code is available upon request. Contact Mark Ratcliffe, M.D. at mark.ratcliffe@med.va.gov
Employee Training – Class Registration

The Employee Training – Class Registration application interfaces with the VISTA PAID – Education Tracking (PRSE) package. Unlike the VISTA TIU Package, the PAID – Education Tracking package does not have programmer APIs to file data into the PRSE files. The development of this application required the use of the INSERT and UPDATE SQL Commands.

The SFVAMC also made extensive local modifications to the PAID – Education Tracking package which includes sending an Alert to the employee’s supervisor when the employee registers for a class. The supervisor then approves/disapproves the training request and an alert is sent back to the employee notifying him/her of the supervisor’s action.

The web application’s main interaction is with the STUDENT NAME multiple, within the START DATE/TIME OF CLASS multiple, of the PRSE EDUCATION REGISTRATION file (452.8). Here is look at the Fileman Condensed Data Dictionary for the START DATE/TIME OF CLASS multiple:

CONDENSED DATA DICTIONARY---START DATE/TIME OF CLASS FILE (#452.889)UCI: VAH,ROU

FIELD
FIELD

NUMBER
NAME

.01

START DATE/TIME OF CLASS (MRD), [0;1]

1

LOCATION OF PRESENTATION (FX), [0;2]

2

ENDING DATE/TIME OF CLASS (DX), [0;3]

3

PRESENTER/SUPPLIER (FX), [0;4]

3.1

CLASS LIMIT (NJ3,0), [0;5]

4

STUDENT NAME (Multiple-452.8894), [1;0]

.01

STUDENT NAME (MRP200'), [0;1]

1

SERVICE (RFX), [0;2]

3

S.S.N. (RNJ9,0), [0;4]

4

EMPLOYEE/NON-EMPLOYEE (SX), [0;3]

662001

APPROVING SUPERVISOR (P200'), [662000;1]

662002

GRANT TYPE (F), [662000;2]

662003

GRANT NUMBER (F), [662000;3]

662005

SUPERVISOR RESPONSE (RS), [662000;5]

662006

SUPERVISOR RESPONSE DATE (RD), [662000;6]

662001
 COST PER STUDENT (NON-VA) (NJ7,2), [662000;1]

662002
ALLOW OVER BOOKING (RS), [662000;2]

As you can see, we’re dealing with a multiple within a multiple. The Fileman mapper creates three SQL Tables for this situation, one for the PRSE EDUCATION REGISTRATION parent file, one for the START DATE/TIME OF CLASS multiple, and one for the STUDENT NAME multiple. All three tables will have to be maintained when adding a student to a class.

Employee training classes are grouped into training categories. The web application begins by presenting the user with a choice of training categories:

[image: image11.png]Available Training

When a user selects the training category, the classes.asp active server page is called and the corresponding TYPE OF CLASS letter code for the category is passed in (i.e. “O” for Computer/Self Improvement). The classes.asp page calls the KB_SQL Stored Procedure ST_EDU_CLASS('" & letter & "'):

SET STORED_PROCEDURE ON

SET PARAMETERS = 'letter'

 SELECT R.PRSE_EDUC_REGISTRATION_ID AS IEN,

 R.CLASS_NAME_FK@PROGRAM_CLASS_TITLE AS CLSS_NME,

 C.START_DATE_TIME_OF_CLASS AS CLASS_DATE,

 C.PRSE_EDUC_R_S_D_T_O_CLASS_ID AS IENII,

 C.LOCATION_OF_PRESENTATION AS LOC,

 R.TYPE_OF_CLASS

 FROM PRSE_EDUC_REGISTRATION R, PRSE_EDUC_R_S_D_T_O_CLASS C

 WHERE R.PRSE_EDUC_REGISTRATION_ID = C.PRSE_EDUC_REGISTRATION_ID

 AND R.TYPE_OF_CLASS = ?

 AND CLASS_DATE > TODAY

 ORDER BY CLSS_NME, CLASS_DATE

The stored procedure returns the class title and the date of the class for classes that meet the class type criteria and are scheduled at a future date:

[image: image12.png]Class List

When the user selects the class they want to register for, the user is prompted for their VISTA Access/Verify Code to establish their identity.

The user is then prompted to enter their supervisor’s last name. The supervis.asp active server page is then called to provide the user with a choice list of people who match the last name and are asked to select their supervisor’s name. This is done to get the supervisor’s exact name and DUZ because it is needed when we register the student for the class. The supervis.asp active server page calls the ST_EDU_SUPER('" & super & "') KB_SQL Stored Procedure:

SET STORED_PROCEDURE ON

SET PARAMETERS = 'super'

SELECT PIECE(NAME,";",1) AS SUPDUZ, REAL_NAME, TITLE

 FROM TELEPHONE_DIRECTORY_RECORD

 WHERE REAL_NAME [?

 ORDER BY NAME

When the user selects their supervisor, the supervis.asp active server page calls the update.asp active server page. The update.asp active server page does a little maintenance step and calls the KB_SQL Stored Procedure ST_EDU_UPDATE('" & supv & "','" & duz & "'):

SET STORED_PROCEDURE ON

SET PARAMETERS 'supduz,duz'

UPDATE NEW_PERSON

 SET APPROVING_SUPERVISOR = ?

 WHERE NEW_PERSON_ID = ?
The ST_EDU_UPDATE KB_SQL Stored Procedure updates the Approving Supervisor field in the New Person file for the user. Two parameters are passed to this stored procedure. Note that the order in which the 2 parameters are passed correspond to the order of the “?” in the where clause. The update.asp active server page also displays to the user what class they are about to register for and gives them another chance to exit the application:

[image: image13.png]Complete Registration

When the user selects the continue button, the finish.asp active server page is called. The finish.asp active server page does several tasks. The first thing finish.asp does is call the KB_SQL Stored Procedure ST_EDU_LAST('" & ien & "','" & ienii & "','" & duz & "') to check to see if the employee is already registered for the class:

SET STORED_PROCEDURE ON

SET PARAMETERS = 'ien,ienii,duz'

SELECT R.PRSE_EDUC_REGISTRATION_ID AS IEN,

 R.CLASS_NAME_FK@PROGRAM_CLASS_TITLE AS CLSS_NME,

 C.START_DATE_TIME_OF_CLASS AS CLASS_DATE,

 C.PRSE_EDUC_R_S_D_T_O_CLASS_ID AS IENII,

 C.LOCATION_OF_PRESENTATION AS LOC,

 N.STUDENT_NAME

 FROM PRSE_EDUC_REGISTRATION R,

 PRSE_EDUC_R_S_D_T_O_CLASS C,

 PRSE_E_R_S_D_T_O_C_S_NAME N

 WHERE N.PRSE_EDUC_REGISTRATION_ID = ?

 AND R.PRSE_EDUC_REGISTRATION_ID = C.PRSE_EDUC_REGISTRATION_ID

 AND R.PRSE_EDUC_REGISTRATION_ID = N.PRSE_EDUC_REGISTRATION_ID

 AND N.PRSE_EDUC_R_S_D_T_O_CLASS_ID = ?

 AND N.STUDENT_NAME = ?
Note that the three parameters passed correspond to the three “?” in the query.

The user is displayed a message if they are already registered for the class. If the user is not registered for the class, the finish.asp active server page calls the KB_SQL Stored Procedure ST_EDU_REG('" & ien & "','" & ienii & "','" & duz & "','" & duz & "','" & ssn & "','" & emp & "','" & service & "','" & supv & "') which registers the user into the class with an INSERT SQL command:

SET STORED_PROCEDURE ON

SET PARAMETERS = 'ien,ienii,duz,duz,ssn,emp,service,supv'

INSERT INTO

 PRSE_E_R_S_D_T_O_C_S_NAME

 (PRSE_EDUC_REGISTRATION_ID

 ,PRSE_EDUC_R_S_D_T_O_CLASS_ID

 ,PRSE_E_R_S_D_T_O_C_S_NAME_ID

 ,STUDENT_NAME

 ,S_S_N

 ,EMPLOYEE_NON_EMPLOYEE

 ,SERVICE

 ,APPROVING_SUPERVISOR

 ,SUPERVISOR_RESPONSE)

 VALUES(?,?,?,?,?,?,?,?,0)

Note the eight parameters passed correspond to the first eight fields in the insert statement, which correspond with the “?” in the VALUES clause. The ninth parameter is just set to 0.

The finsh.asp active server page runs the ST_EDU_LAST stored procedure again to verify that the employee was registered for the class.

The finish.asp active server page then invokes the SQL Command SELECT NEW_PERSON_ID FROM NEW_PERSON WHERE NEW_PERSON_ID = KMM_EDU_ALERT('" & supv & "','" & ien & "','" & ienii & "','" & duz & "') which calls the KB_SQL Function KMM_EDU_ALERT. The KMM_EDU_ALERT invokes the routine ARHAEDAL, which sends the alert to the employee’s supervisor within VISTA. Here is the ARHAEDAL routine:

ARHAEDAL ;SFVAMC/KMM 8/31/98 - PRSE EDUCATION ALERT FROM WEB

 ;;1.0

EN(VALUE) ;

 ; ARHSDA = Supervisors DUZ

 ; ARHIEN = Class DA

 ; ARHIENII = Start/Date DA

 ; ARHDUZ = Student DU

 S U="^"

 S ARHDA2=0

 S ARHSDA=VALUE(1),ARHIEN=VALUE(2),ARHIENII=VALUE(3),ARHDUZ=VALUE(4),DUZZ

 S ARHDA2=$O(^PRSE(452.8,ARHIEN,3,ARHIENII,1,"B",ARHDUZ,ARHDA2))

 S ^PRSE(452.8,"ARIP",ARHSDA,ARHIEN,ARHIENII,ARHDA2)=""

 I '$D(^PRSE(452.8,"ARIALERTED",ARHSDA)) D

 .S XQA(ARHSDA)=""

 .S XQAMSG="Education Requests Pending"

 .S XQAROU="REVIEW^JHUTL2"

 .D SETUP^XQALERT

 .S ^PRSE(452.8,"ARIALERTED",ARHSDA)=$$NOW^XLFDT()

 S VALUE=ARHDUZ

 Q
Note the KMM_EDU_ALERT function has four parameters and invokes the A4^SQL0FC to establish the VALUE array with the four parameters. The user is then displayed a confirmation of class registration screen that completes the Employee Training – Class Registration web application:

[image: image14.png]Registration Confirmation

Maintenance Issues

Setting up the connection between your web server and the KB_SQL M Based Server is simple. Within your M environment invoke D ^SQL and log into KB_SQL. Follow the menu path DBA OPTIONS/CONFIGURATION/SITE EDIT/SERVER INFO. Under the Server Info menu, there is an option to “Edit Network Configuration” which is where you would enter the IP Address of your server machine. You also need to establish a series of ports, with one port designated as a Server Port, with the other ports as listeners. A good rule for the number of listener ports is to multiply your user license times 2. For example, SFVAMC has an 8-user license so we set up 16 listener ports.

When you install the KB_SQL ODBC Driver on your web server you will need to set up a “System Data Source” and under the configuration button you type in the IP Address of your Server and the Port you designated as the server port.

In developing the Java Application we were using KB_SQL’s ODBC Driver v 3.5 which did not support the JDBC-ODBC Bridge that came with Visual Café so we purchased some software which acted as a filter between Java’s JDBC and ODBC. KB_SQL’s ODBC Driver v3.6 supports the JDBC to ODBC Bridge so we don’t need the middleman any more.

As mentioned earlier, KB_SQL Version 3.6 does not support the memo (Text) field but KB_SQL Version 4.0 will.

Since we are using INSERT and UPDATE commands in the Employee Training – Class Registration package, we have to create “Table Filers” for the KB_SQL Tables that are updated. You can create a table filer by invoking the M routine D ^KBF1FB. You will be prompted for which table to create the filer for. You need to create the table filers each time you map/remap your Fileman Files.

You also need to maintain your Public Privileges options that are located under the Security DBA Menu Option. Public Privileges is where you identify tables and queries that users may use. For example, the EDUCATE user needs to be able to UPDATE the NEW_PERSON Table and INSERT into the PRSE Table. The EDUCATE user also needs to be able to “Select” the KB_SQL Stored Procedures.

If you have any other questions, feel free to contact me at kevin.magee@med.va.gov.

